PCYNLITX SOFTWARE
TECHNOLOGIES

ERKAM MURAT BOZKURT

PCYNLITX CYBERNETIC THREAD MANAGEMENT LIBRARY FOR C#+

What is pcynlitx multithreading library

Basically, pcynlitx multithreading is a C++ template library providing thread control functions
for multithreading applications. However, differently from the classical C++ multithreading
applications, in pcynlitx library, the theoretical foundation of the software cybernetics is used.

You can find the theoretical foundation and the scientific outcomes of the research study related
with pcynlitx multi-threading library from the citation given below. The research paper published
on a first class, peer-reviewed computer science jounal and it includes the explanation of the
approach that is used on the pcynlitx library thread control functions, a comprehensive literature
study and the performance tests that are carried out for cybernetic thread management. In fact,
on the research paper, a general software development approach is introduced and the same
methodology can be applied for different languages.

Bozkurt,Erkam Murat, The usage of cybernetic in complex software systems and its application to the
deterministic multi-threading. Concurrency Computation Pract. Exper. 2022; 34(28):e7375. WILEY.
doi:10.1002/cpe. 7375

Fixing the execution order of the critical sections

Differently from the classical thread control, the software developer can fix the execution order of
the critical sections with the help of the cybernetic thread control technology. Determination of
the execution sequence of the code sections significantly improves internal determinism and This
mechanism provides natural protection against the ordering violations that are faced multi-thread
software applications. In other words, fixing the execution order of the code sections improves
internal determinism and simplifies multi-threaded software development.

Program Flow

Thread - N
- |
\ 4 o |
CODE FRAGMENT Thread - 3
| Thread - 2
E Thread - 1

Figure 1. Fixing the execution order of the critical sections

Abstraction on multi-threading operations

The main objective of the pcynlitx software technologies is the simplification on the software
development. Therefore, from the software developers perspective, it can be easily said that the
pcynlitx multi- threading library tries to minimize the complexity of the multi-threaded software
development and provides abstract interface for multi-threaded software management.

https:./www.pcynlitx.com

The thread control mechanism that is used in pcynlitx multi-threading

In the classical C++ multi-threading, the block status of the threads is changed when a particular
condition occurs. In this classical approach, the block status of the threads change without rec-
ognizing the identity of the threads. However, instead, in pcynlitx multi-threading, the threads
are controlled by means of their id numbers which are given by the software developers to the
threads. In other words, the threads are blocked using ID numbers which are given by the pro-
grammer to the threads on thread creation. Moreover, you can control the threads in therms of
the names of the functions which are executed by the threads. This situation has been illustrated
on the figure which is given below.

Typical thread control operation Peynlitx block operation

void function() { void function() {

mt.lock(); syn.stop(1);

if(condition){ 5
cv.wait();

mt.unlock();

Figure 2. The comperation of the multi-threading approaches

A typical example for pcynlitx multithreading

#include <iostream>
#include <thread>
#include <pcynlitx>

using namespace pcynlitx;
void function(syncronizer & syn){
syn.stop(2,1);
std::cout << "Thread Number:" << syn.number() << std::endl;

syn.run(2,1);
+

int main(){
threads th(2);
for(int i=0;i<2;i++){

th.create(function,i,"function") ;

}
for(int i=0;i<2;i++){

th.join(i);
by

return O;

Explanation of the example

In the main function, at first, an instance of the pcynlitx::threads class constructed with name ’th’
Then, the threads are created with create member function of the threads object. The create
member function works as variadic and you can pass any number of argument to the create
member function in pcynlitx multithreading. However, the first three argument is mandatory.
These are the address of the function to be executed, the id number of the thread and the name
of the function in terms of std::string. In fact, the cybernetic thread management system collects
its data from the software developer over the create member function. Meanwhile, an instance of
the synchronizer object must be declared.The synchronizer object is responsible from the thread
control operations and it is a public member of the instance of the threads class. Moreover, it is
passed to the thread function automatically.

Secure messaging between the threads

In pcynlitx applications, to accomplish message-sending concurrency, you can send any
information between the threads over a channel object. However, in real multithreading appli-
cations, a new questions arises when threads are synchronized by means of messages: which
message arrives first!. The pcynlitx multithreading provides a solution to this problem with
controlling the thread execution order. In pcynlitx applications, Channel class works based on
a lastin first out queue class. A typical example for channel class usage has been given in below.

void PrintMessage(synchronizer channel<std::string> & syn){
syn.stop(3,0); // The thread 3 always executed after thread-O0

if (syn.number () == 0){
std::string s = "Hello",
syn << s;
}
if (syn.number () == 3){
std::string s;
syn >> s;
std::cout << "The message coming:" << s <<std::endl;

}

syn.run(3,0) ; /* The thread-3 starts its execution after

thread-1 calls syn.run(3,0) */
T

int main(){

channel<std::string> ch;

ch.set_producer(0);
ch.set consumer(3);

threads<Test> th(this,4);
for(int i=0;i<4;i++){
th.create(Test: :PrintMessage,i);

+

for(int i=0;i<4;i++){
th.join(di);

+

ermuratbozkurt@gmail.com

https://www.pxynlitx.com
er.muratbozkurtr@gmail.com

